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A crystallographic pro-molecule/pro-crystal model is described that goes beyond the standard reference
model, which explicitly contains only numerically determined atomic positions and thermal vibrational
smearings, while leaving all other information lumped together in a so-called deformation density. The new
model includes further explicit parameters that identify valence-orbital orientations and occupancies of
degenerate or near-degenerate atomic ground states in crystals. A method is described for extracting this
additional information as well from X-ray data by least-mean-squares refinements. It is applied to the
experimental data sets of three organic molecules: 9-(tert-butyl)anthracene, tetrafluoroterephthalonitrile, and
1,2,3-triazine. The electronic structure inferences are discussed.

1. Introduction. ± 1.1. Atoms in Molecules. On the most elementary level, matter
consists of coupled quantum fields and, in the quantum-chemical regime, it is described
by electrically coupled nuclear and electronic wave functions. The interactions between
these fundamental constituents are, however, of such a nature that an eminently
successful description of all phenomena encountered over the last two hundred years
within the realm of experimental chemistry has been achieved by the granular model of
atoms in molecules [1]. In the later stages of this development, the determination of the
atomic structures of crystals by X-ray diffraction has played a prominent role [2]. Since
this experimental technique essentially provides an account of the electron density
[3] [4], the resulting modeling of crystals in terms of atoms reduces to an interpretation
of the observed electron densities of crystals in terms of atomic electron densities
derived, in some manner, from quantum theoretically calculated ground-state wave
functions of free atoms.

The approach universally taken in this endeavor is to approximate the total electron
density as a superposition of atomic densities. This is because it would be unrealistic to
try to deduce superpositions of atomic wave amplitudes (the approach that proves
successful in quantum-chemical calculations) from experimental densities of the
available accuracy (see, e.g., [5 ± 8])1).

Nonetheless, molecular and crystal electron densities cannot be obtained as
straightforward superpositions of atomic ground-state densities and the differences
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1) A somewhat different approach is described in [9 ± 12].



between the former and the latter, howsoever constructed, have come to be called
difference densities. (Some authors also use the term �deformation density�, but we will
not do so since we wish to reserve the concept of �deformation� for a specific and more
precisely defined purpose to be discussed presently.) Difference densities are
manifestations of the �chemical forces� acting between the atoms, and it is clearly in
the spirit of the atomic model to look for conceptual models that can furnish
interpretations of difference densities by relating them to the variety of bonding
patterns that so enchant chemists. Particularly gratifying, at least in the eyes of the
present authors, would be model concepts bearing some relationship to quantum-
mechanical conclusions regarding chemical bonding.

Within the crystallographic context, such a superposition of atomic densities is
called a promolecule or procrystal reference. The conventional standard for promole-
cules is based on spherically averaged and configuration-states-averaged self-consis-
tent-field-density distributions of the free atoms, superposed at their crystallographic
positions and vibrationally smeared. The success of this simple vibrating-ball model can
be attributed to four reasons2): i) The model already recovers all gross features of the
actual electron density; ii) the model has yielded a wealth of basic structural
information that has proven elucidative for the understanding of many chemical
properties; iii) the agreement to use such a simple model has provided an unambiguous
practical reference basis for the comparison of the results from different research
groups; iv) until fairly recently, experimental limitations made it difficult to routinely
determine X-ray data with an accuracy that would warrant an in-depth exploration of
more elaborate atom models. However, with the advent of more powerful diffraction
techniques, differences between experimental electron densities in crystals and
superpositions of atomic ground-state densities have become accessible to a much
higher degree of accuracy so that the optimal choice of the promolecule model deserves
re-examination.

1.2. Orientation and Deformation of Atoms. In this search, it would seem desirable
to define the atomic constituents in such a manner that they retain their individuality
and the character of the free atoms as much as possible. With such an aim in mind, we
focus attention on the fact that, for atoms with degenerate (or near-degenerate) ground
states, as is common for open p-, d-, and f-valence shells, any arbitrary superposition of
the degenerate (or near-degenerate) partner functions is an equally valid ground-state
wave function or, more generally, ground-state ensemble density operator. (For instance,
the superposition of all degenerate functions with equal weights is spherically
symmetric.) The corresponding ground-state densities can, therefore, assume many
different shapes, all of which are isoenergetic in the free atom. We shall call these kinds
of density modifications orientations of the ground-state density. Since they can occur
without energetic resistance in the free atoms, such orientations can be caused even by
minuscule long-range forces. Now, quantum-chemical calculations show beyond any
dispute that, whatever the definition of the atomic constituents, they rarely are
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2) In support of such a promolecule choice, it has also been argued that all free-atom densities are intrinsically
always spherical. This intuitive a priori assertion is, however, at variance with basic quantum theory, as will
be discussed in Chapt. 1.2.



spherically symmetric in a molecule3). In view of the aforementioned orientational
flexibility of degenerate ground states, it seems, therefore, reasonable to construct
promolecules from ground-state densities that are oriented in the sense just defined so
as to approach the local molecular densities as closely as possible. This uniquely
specifies the atomic-ground-states ensemble density, in addition to the positional
distribution. It is found that the difference density between such an optimally oriented
promolecule and the actual molecule (crystal) is always comparatively small whereas
the density changes that are induced by arbitrary selections of alternative ground-state
orientations, including the spherical choice, can become quite large [13 ± 15]. The
optimal local orientational ground-state adaptation of any atom in the molecule is,
therefore, in the spirit of preserving the characteristics of the free atoms while adapting
them to the local bonding situation.

In the context of such a model (and excluding thermal vibrations for the moment),
the �chemical forces� are seen as causing two modifications of the atomic (quasi)de-
generate ground-state ensemble densities after the latter have been simply superposed
at their molecular equilibrium positions, namely: i) the individual atomic ground states
are oriented and ii) the total density is further deformed by an additional the addition
of the difference density. The latter embodies deformations that are genuinely interatomic
in the sense that they cannot be recovered by any (intra-atomically isoenergetic)
reorientations of the atomic ground states. They comprise density modifications that, in
quantum-chemical treatments, are associated with atomic promotions, orbital polar-
izations and hybridizations, orbital overlaps, interatomic interferences, Pauli exclusion
effects, etc. We find it, therefore, expedient i) not to use the term �deformation� to
describe the ground-state orientations, and ii) to use the term deformation difference
density (DDD) for the difference density defined with reference to the oriented
atoms4). While the DDDs contain significant bonding information, the most
consequential effects of the binding forces are the establishment of the atomic
positions in the molecule and the orientations of the ground-state atoms [16] [17].

The deviation of an oriented ground-state density from sphericity can be effectively
exhibited by forming the difference between the oriented and the spherically averaged
ground-state densities. We may call this difference the orientational difference density
(ODD). In the case of open p-shells, often has a predominantly quadrupolar character
around the atomic positions as noted, e.g., by Bader [18]. It is apparent that the
conventional difference density, which we shall call the total difference density (TDD�
crystal density minus spherically averaged atomic densities) can be expressed as the
sum of the orientational and the deformational difference densities introduced here:
TDD�ODD�DDD. The conceptual resolution of TDD implied by this identity
offers certain insights. Not only can the ODD terms for atoms with degenerate ground
states be considerably larger than the DDD terms, but they are also less sensitive to
errors in the experimental analysis [14] [19]. Furthermore, the same atom may exhibit
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3) Here and in the following, �molecule� also means �crystal�.
4) This is a slight change compared to the nomenclature we used in previous papers where we called this

quantity the �chemical deformation density�.



quite different ground-state orientations under different coordination conditions,
leading to a wide variety in ODD and, hence, TDD shapes. By contrast, much more
regularity is found to exist for the DDD features [13 ± 15]. At the same time, the
orientational terms are described by only a small number of parameters that have
transparent physical meanings, whereas the reduction of the information embedded in
the DDD terms to a small parameter set would appear to be very difficult in most cases.
It seems, therefore, infelicitous from an interpretative as well as an information-
theoretical point of view to mix the density changes described by these two kinds of
terms.

It may be clarifying to compare the approach of the optimal ground-state
orientation i) with the standard HO treatment (i.e., the determination of the locations
and vibrations of the contributing spherical atomic densities by highly weighting the
high-order scattering data) as well as ii) with the multipole refinement (which follows
the HO refinement with the addition of multipole expansions at the atomic positions as
an effective way of deforming the atomic densities beyond the orientational changes
discussed so that their superposition completely recovers the observed electron
density). Such a comparison is exhibited in Table 1.

In view of what has been said, the introduction of oriented promolecules deserves
exploration as a worthwhile further development of the model of atoms in molecules.
Within our model, three aspects are thus distinguished in molecule formation: i) the
positioning of the atomic cores at the equilibrium positions and their vibrational
smearing; ii) the orientation of the atomic ground-state valence shells according to
directions most suitable for the specific chemical bonds to be formed; and iii) an
additional redistribution of electronic charge associated with the establishment of
these bonds. In crystals, the electron density may be further deformed by intermo-
lecular forces, librations, etc. Such a conceptual differentiation is appealing from a
quantum-chemical perspective provided that the local adaptation of the oriented
promolecules can be accomplished by a general, unambiguous, and nonarbitrary
definition.

Certain caveats should be understood. For example, it would not be a simple matter
to associate energy increments with the aforementioned three aspects, and they would
depend upon whether the orientations of the atoms are envisioned to take place before

Table 1. Comparison of Refinement Methods

Standard HO refinement Present approach Multipole refinement

Refined Structural Structural parameters Structural parameters and
parameters parameters and atomic orientations total deformation density

Remainder TDD and errors DDD and errors Residual errors
�large� R value �medium� R value �small� R value

Interpretable i) Structural parameters i) Structural parameters i) Structural parameters
quantities ii) Features overlaid ii) Orientation parameters ii) Features overlaid

in the TDD map iii) Deformation difference density in the TDD map
iii) Valence-shell multipoles
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or after they are put in their molecular positions5). Furthermore, any conceptual
decomposition of the kind discussed represents an analysis of the state of the molecule
at the equilibrium geometry and is only very indirectly related to mechanistic questions
of bond-formation kinetics ± a statement that is, of course, equally valid for the
geometrical structure itself.

1.3. Implementation. It is the objective of the present investigation to show that the
framework described can be filled with quantitative content by tying it to experimental
information derived from X-ray diffraction through a nonarbitrary procedure. The first
step is the determination of the equilibrium positions of the atoms as well as their
vibrations by appropriate conventional methods. The second step is, then, the
determination of the optimally adapted oriented atomic ground states. To this end,
an appropriate valence-orbital set must be selected from the (near) degenerate ground-
state ensemble of each atom. The oriented atomic ground-state density of such an atom
can then be expressed in the diagonal form (SnNnf2

n), where the fn are orthonormal
linear combinations of the valence orbitals and the Nn are the corresponding
occupation numbers. These are the parameters that describe the ground-state density
orientations, and their determination will be discussed below. The third step is then the
calculation of difference densities.

The fundamental aspects of such an approach have been described in a series of
papers [13 ± 15] [20 ± 34]. Two nonarbitrary methods were formulated for the optimal
orientational adaptation of atomic ground states to local molecule/crystal densities.
One method consists of minimizing the mean-square deviation between the oriented
promolecule density and the actual density of the molecule/crystal in direct space, and
this approach has been quantitatively applied to a number of theoretically calculated
individual molecules [15] [22] [31] [34]. Its application to crystal densities obtained
from multipolar X-ray refinements is currently being studied. The second method,
which is the subject of this paper, consists of minimizing the mean-square deviation in
k-space between the scattering intensities derived from the oriented promolecule and
the actual crystal-diffraction intensities [13] [33]. The implementation was first worked
out by Miller [13] and subsequently further pursued by Nin [14]. It has been applied to
several experimental data sets [13] [14] [34] [35]. The explicit implementation has been
worked out by Miller [13], and it is the basis for the present investigation. A gratifying
consistency is found between the results deduced from the two approaches.

2. Theory. ± 2.1. Basic Equations. The promolecule [36] used in this work is formed
from a superposition of atoms that, in turn, are superpositions of spherical cores, and of
oriented ground-state valence orbitals weighted by their occupation numbers Nan

[34] [37]. The basic equations have been derived in [13] and [33]. The electron-
density expression for the ath atom (sans thermal and atom site occupancy corrections) is
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5) In this context, it is of some interest that the electrostatic Coulombic interaction energy between the
oriented ground-state atoms, superposed at the quantum-mechanical equilibrium positions, roughly
parallels the quantum-mechanical interaction energy. This is presumably so because i) according to the
virial theorem, the electrostatic Coulomb and exchange-correlation energy at the nuclear equilibrium
geometry is equal to twice the bond energy, and ii) the former can roughly be approximated by the
Coulomb energy of the promolecular density [16] [17]. This Coulombic model will not yield the equilibrium
geometry however.



1a(r)�Smn cm(r) cn(r) Pamn (1a)

Pamn�SnNanVamnVann (1b)

where Nan are the eigenvalues (orbital occupancies) and Vann the eigenvectors
(orbital orientations/shapes) of the atomic one-electron density matrix Pa. They
embody the orientational information of the atomic densities. The subscript m represents
the quantum number set (nlm) of the mth atomic reference orbital cam(r)�Rnl(r)
Ylm(q,f). The spherical harmonics Ylm refer to an orthogonal reference frame, which, in
the case of nonorthogonal unit cells, is related to the lattice vectors by standard
formulas.

In reciprocal space, the experimental crystal-structure factors Fobs(k) are approxi-
mated by a linear combination of atomic scattering factors fa(k)

Fobs(k)�F(k)� s x(k) Sa ma Ta(k) fa(k) exp(ik ´ ra) (2)

where ra are the atomic positions in the unit cell, and s is the overall scale factor.
The factor x(k) is an empirical extinction correction [38 ± 42]. The factors ma are the
atom-site-occupancy multipliers, and Ta(k) are the usual temperature factors
[43] [44]. Eqn. 2 may be separated into real and imaginary parts, F�F '� iF '', viz.
for each atom:

F 0
a(k)� s x(k) ma Ta(k) [fg

a(k) cos (k ´ ra)ÿ fu
a(k) sin (k ´ ra)] (3a)

F 00
a (k)� s x(k) ma Ta(k) [fu

a(k) cos (k ´ ra)� fg
a(k) sin(k ´ ra)]. (3b)

The atomic scattering factor

fa(k)�SnNanfann(k) (4a)

is the sum of the orbital occupancies Nan times the oriented orbital-scattering factors

famn(k)�Smn Vammfamn(k) Vann . (4b)

The standard orbital scattering functions famn(k), for atomic orbitals j ami and j ani, are

famn(k)�SL ham j jL(k) j ani ZL(m, n)/4p (5)

where ham j jL j ani and ZL(m, n) are the Fourier transforms of the radial and angular
parts of the wave function products, respectively [45]. The functions ZL(m, n) for s-, p-,
and d-shells were computed on the basis of spherical Bessel functions from [46] and are
given in Table 2. The SCF radial functions used to calculate the ham j jL j ani were from
Raffenetti [47], and Raffenetti and Ruedenberg [48]. The YLM functions in k-space [49]
occurring in Table 2, are given with the proper phases in Table 3. The integrals [50]
denoted in Table 2 as VL for M� jmm j � jmn j and as WL for M� jmm j ÿ jmn j are
given in Table 4 for the L-range [ j lm ÿ ln j , (lm � ln)]. Each of the �f� functions given in
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Eqns. 4 and 5 have either gerade or ungerade character depending on whether lm� ln is
even or odd6).

The unitary spectral representation matrix Va diagonalizes the electron density
matrix, Pa�VaNaV�a , which may be used to rewrite Eqns. 4 as

fa(k)�Sm,nPamnfamn(k). (6)

Since the filled (core) shells are assumed to be isotropic, with Va� 1 and Na� 2,
Eqn. 4 is explicitly needed only for the open valence shell(s). Anomalous dispersion,
being mainly a core electron phenomenon, is added in the standard fashion only to the
core electron shells� scattering factors.
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6) The odd case will not occur for the orientation of degenerate ground states except when nearly degenerate
states of different parity are mixed, e.g., in the case of valence s! p promotion.

Table 3. The YLM(h, k, l) Functions

L M YLM(h, k, l) L M YLM(h, k, l)

0 0 1 2-2
�����
15
p

hk/ j ~h j 2

2-1
�����
15
p

kl/ j ~h j 2
1-1

���
3
p

k/ j ~h j 2 0
��������
5=4

p
(3l2ÿj ~h j 2)/ j ~h j 2

1 0
���
3
p

l/ j ~h j 2 1
�����
15
p

h l/ j ~h j 2
1 1

���
3
p

h/ j ~h j 2 2
����������
15=4

p
(h2ÿ k2)/ j ~h j 2

3-3
����������
35=8

p
k(3h2ÿ k2)/ j ~h j 3 4-4

�������������
315=4

p
hk(h2ÿ k2)/ j ~h j 4

3-2
��������
105
p

hkl/ j ~h j 3 4-3
�������������
315=8

p
kl(3h2ÿk2)/ j ~h j 4

3-1
����������
21=8

p
k(5l2ÿj ~h j 2)/ j ~h j 3 4-2

����������
45=4

p
hk(7l2ÿj ~h j 2)/ j ~h j 4

3 0
��������
7=4

p
l(5l2ÿ 3 j ~h j 2)/ j ~h j 3 4-1

����������
45=8

p
kl(7l2ÿ 3 j ~h j 2)/ j ~h j 4

3 1
����������
21=8

p
h(5l2ÿj ~h j 2)/ j ~h j 3 4 0 3/8 (35l4ÿ 30l2 j ~h j 2� 3 j ~h j 4)/ j ~h j 4

3 2
�������������
105=4

p
l(h2ÿ k2)/ j ~h j 3 4 1

����������
45=8

p
hl(7l2ÿ 3 j ~h j 2)/ j ~h j 4

3 3
����������
35=8

p
h(h2ÿ 3k2)/ j ~h j 3 4 2

�������������
45=16

p
(h2ÿ k2)(7l2ÿj ~h j 2)/ j ~h j 4

4 3
�������������
315=8

p
hl(h2ÿ 3k2)/ j ~h j 4

4 4
���������������
315=64

p
(h4ÿ 6h2k2� k4)/ j ~h j 4

Table 2. The ZL(m, n)Functions

m1
a) m2

a) ZL(m, n)

0 0 VL(l10, l20)YL0

m 0 VL(l1m, l20)YLm

0 m VL(l10, l2m)YLm

ÿm 0 VL(l1m, l20)YL(ÿm)

0 ÿm VL(l10, l2m)YL(ÿm)

m m 1/
���
2
p

VL(l1m, l2m)YL(2m) � WL(l1m, l2m)YL0

ÿm m 1/
���
2
p

VL(l1m, l2m)YL(ÿ 2m)

m ÿm 1/
���
2
p

VL(l1m, l2m)YL(ÿ 2m)

ÿm ÿm ÿ 1
���
2
p

VL(l1m, l2m)YL(2m) � WL(l1m, l2m)YL0

m1 m2 1/
���
2
p

VL(l1m1, l2m2)YL(m1�m2) � 1/
���
2
p

WL(l1m1, l2m2)YLjm1ÿm2j
ÿm1 m2 1/

���
2
p

VL(l1m1, l2m2)YL(ÿm1ÿm2) � 1/
���
2
p

WL(l1m1, l2m2)YL(ÿjm1ÿm2j) sign(m1ÿm2)
m1 ÿm2 1/

���
2
p

VL(l1m1, l2m2)YL(ÿm1ÿm2) ÿ 1/
���
2
p

WL(l1m1, l2 m2)YL(ÿjm1ÿm2j) sign(m1ÿm2)
ÿm1 ÿm2 ÿ 1/

���
2
p

VL(l1m1, l2m2)YL(m1�m2) � 1/
���
2
p

WL(l1m1, l2m2)YLjm1ÿm2j

a) mi is a positive number, ÿmi is a negative number.



The promolecule/procrystal reference may thus be assembled in reciprocal space, from
atoms with densities determined by the electron density matrices P�VNV�, by using
the equations given above, the look-up Tables 2 ± 4, and the tabulated radial functions
ham j jL j ani [13] [45].

Our atomic form factors refer to ground states (e.g., 3P in carbon) and not to ground
configuration averages (e.g., 3P, 1D, 1S carbon), as do those in the International Tables
[45]. In carbon, for example, the difference Df is less than 0.03 for sin(q)/l< 0.2 �ÿ1.
Correspondingly, the expectation value h2p j r j 2pi is 3.74a0 for the ground-state and
3.89a0 for the ground-configuration average.

2.2. Least Squares. The weighted-least-squares refinement of the promolecule�s
variables [13] [33] is accomplished through iterative refinement of variables n, u by Dn,
Du determined by the normal Newton-Gauss equations [51 ± 53]

Sk wk Sr [@ jF(k) j /@v] [@ jF(k) j /@v] Du

�Sk wk [ jFobs(k) j ÿ jF(k) j ] @ jF(k) j /@v, (7a)

or, in matrix notation

SrAvuDu�Bn, (7b)
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Table 4. The VL and WL Functions

AO Pair AO Pair

ss V0(00, 00)� 1 sd V2(00, 20)� 1
V2(00, 21)� 1

sp V1(00, 10)� 1 V2(00, 22)� 1
V1(00, 11)� 1

dd V0(20, 20)� 1
pp V0(10, 10)� 1 V2(20, 20)� �������������

20=49
p

V2(10, 10)� ��������
4=5

p
V4(20, 20)� 6/7

V2(11, 10)� ��������
3=5

p
V2(21, 20)� ����������

5=49
p

V2(11, 11)� ��������
6=5

p
V4(21, 21)� �������������

30=49
p

W0(11, 11)� 1 W0(21, 21)� 1
W2(11, 11)�ÿ ��������

1=5
p

V2(21, 21)� �������������
30=49

p
W2(21, 21)� ����������

5=49
p

pd V1(10, 20)� ��������
4=5

p
V4(21, 21)� �������������

40=49
p

V3(10, 20)� �������������
27=35

p
W4(21, 21)�ÿ4/7

V1(10, 21)� ��������
3=5

p
V2(22, 20)�ÿ �������������

20=49
p

V3(10, 21)� �������������
24=35

p
V4(22, 20)� �������������

15=49
p

V3(10, 22)� ��������
3=7

p
W2(22, 21)� �������������

30=49
p

V1(11, 20)�ÿ ��������
1=5

p
V4(22, 21)� �������������

35=49
p

V3(11, 20)� �������������
18=35

p
W4(22, 21)�ÿ ����������

5=49
p

W1(11, 21)� ��������
3=5

p
W0(22, 22)� 1

V3(11, 21)� ��������
6=7

p
W2(22, 22)�ÿ �������������

20=49
p

W3(11, 21)�ÿ ����������
9=35

p
V4(22, 22)� ����������

10=7
p

W1(11, 22)� ��������
6=5

p
W4(22,22)� 1/7

V3(11,22)� ��������
9=7

p
W3(11, 22)�ÿ ����������

3=35
p



where Fobs and F are the experimental and model structure factors, and, according to
Eqn. 3,

@ jF(k) j /@v� [@F '(k)/@v] cos (ak)� [@F ''(k)/@v] sin(ak) (8a)
with

cos (ak)�F '(k)/ jF(k) j , sin (ak)�F ''(k)/ jF(k) j . (8b)

The various derivatives are collected in Table 5. A modification of the standard
procedure is introduced for the orientation coefficients Vamn . To guarantee the
orthogonality of the matrix Va in Eqns. 1b and 4b, an antisymmetric matrix Dta is
introduced. One determines the shifts Dtamn , (m< n) and then uses the following
relationship to obtain an improved, exactly orthogonal Va in the next iteration step i� 1:

Vi� 1
a �Vi

a(IÿDta/2)ÿ1(I�Dta/2). (9)

Other constraints and restraints, which may be needed to keep parameters from
having nonphysical or symmetry-breaking values, may be handled by standard
practices [13] [51 ± 54]. The orbital occupancies present a typical problem. According
to the Pauli principle, they are restrained to lie in the interval [0, 2]. To realize atomic
neutrality, the total number of electrons on an atom must be fixed. Lagrange multipliers
la may be used to maintain the relation

SmDNam� 0 (10)

for each atom a. For the simple case of a single atom, one minimizes

G�Sk wk (DFk)2 ÿ 2laSmDNam (11a)
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Table 5. Derivatives of the Structure Factors

Parameter v @F '/@v

s F '/s
ma F 0

a/ma

xai ÿ 2p hi F 00
a

Ua ÿ 8p sin2 (q)/l2 F 0
a

Uaij (i ´ j) (dijÿ 2) hi hj a*i a*j F 0
a

Nan s ma Ta(k) [fg
an cos (k ´ ra)ÿ fu

an(k) sin (k ´ ra)]
tamn (m<n) 2(NanÿNam) s ma Ta(k) fg

amn cos (k ´ ra)
Vamm s ma Ta (k) 2 Nam [Sn fg

amn Vanm cos (k ´ ra)ÿSn fu
amn Vanm sin (k ´ ra)]

Parameter v @F ''/@v

s F ''/s
ma F 00

a /ma

xai 2p hi F 0
a

Ua ÿ 8p sin 2(q)/l2 F 00
a

Uaij (i ´ j) (dijÿ 2) hi hj a*i a*j F 00
a

Nan s ma Ta(k) [fg
an sin (k ´ ra)� fu

an cos (k ´ ra)]
tamn (m<n) 2(NanÿNam) s ma Ta(k) fu

amn cos (k ´ ra)
Vamm s ma Ta (k) 2 Nam [Sn fg

amn Vanm sin (k ´ ra)�Sn fu
amn Vanm cos (k ´ ra)]



where DF means (j Fobs j ÿ jF j ), leading to

Skm wk [@2 jF(k) j /@Nan@Nam] DNam�Sk wk DFk [@ jF(k) j /@Nan]� la (11b)

or in matrix form
Sm Anm DNm�Bn� la. (11c)

Instead of solving Eqns. 10 and 11c simultaneously, one may also apply a two-step
partitioning procedure. One solves Eqn. 11c formally for DNm and inserts it in
Eqn. 10:

Smn (Aÿ1)mn Bn� laSmn (Aÿ1)mn� 0 (11d)

from which la is obtained. Eqn. 11c is then solved for the occupancy-shift vector DN:

DNm�Sn (Aÿ1)mn Bn� laSn (Aÿ1)mn. (11e)

In principle, the constraint of atomic neutrality may be relaxed to that of molecular or
unit-cell neutrality. However, the fitting of partial atomic changes to molecular and
crystal densities frequently yields rather small charge values even for strongly polar
compounds (e.g., [55 ± 58]). We shall therefore not pursue this avenue here.

Additional constraints on the angular part of the wave function arise when oriented
atoms lie on crystallographic symmetry elements. In handling these, one must introduce
constraints on the Dt in Eqn. 9. As an example, consider an atom with valence
p-orbitals lying on a mirror plane normal to the c-axis of an orthorhombic space group.
One of its symmetry-adapted orbitals, y3, must be perpendicular to the mirror plane,
the other two orbitals lie in the mirror plane. In this case all elements of the matrix V
may be expressed as a function of a single rotation parameter q :

y1 y2 y3

px cosq ÿ sinq 0 (12a)
py sinq cos q 0
pz 0 0 1

That is, only the submatrix Dtxy may be nonzero and the derivatives of each V matrix
elements w.r.t. q are needed to form the normal equations. Alternatively, the symmetry
constraint can be maintained by introducing the two side conditions

Dtxz� 0, Dtyz� 0 (12b)

and adding the corresponding Lagrangian term

ÿ 2lxzDtxz ÿ 2lyzDtyz (12c)

to the function G of Eqn. 11a.
Using appropriately redefined V matrices, one may also incorporate predefined

orbitals based on chemical intuition into the promolecule. Such a choice may, however,
result in a non-ground-state promolecule reference of known energy that goes beyond
the premises of the present work.
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2.3. Difference Densities. A difference-density distribution d1�1ÿ1reference is obtained
by computing the Fourier transform of the corresponding difference in k-space, viz.

d1(r)� (1/Vcell)SkDF(k) exp (ÿ ik ´ r) (13a)

with the overall standard deviation of

s(1)� (1/Vcell)(Sk[DF(k)2])1/2. (13b)

The signal-to-noise ratio is increased by using only reflections for which jFobs(k) j> n.
s(Fobs(k)), where s(Fobs(k)) is the standard deviation of a reflection [41]. Although k
truncation effects are no longer a severe problem in Eqn. 13b, the highest k values in
Eqn. 13a contribute more Fourier truncation ripples and noise than they contribute to
physical-density features [59] [60]. Therefore, we usually cut the Fourier summation at
kMax� sin(qMax)/l ca. 1 �ÿ1.

Three kinds of difference densities are created and examined:

TDD� 1(experiment)ÿ 1(spherically averaged promolecule)
� total difference density (14)

DDD� 1(experiment)ÿ 1(oriented promolecule)
� deformation difference density (15)

ODD� 1(oriented promolecule)ÿ1(spherically averaged promolecule)
� orientation difference density (16)

[32 ± 34]. They are related by

TDD�ODD�DDD (17)

as was already mentioned in the third paragraph in Chapt. 1.2. It has been shown
previously that the magnitude of ODD can vary enormously whereas that of DDD
always stays within rather small bounds [15]. Consequently, the contribution of ODD
to TDD can vary from very little to nearly all of it [22] [21] [15] [30] [32]. The resolution
of Eqn. 17 can, therefore, be helpful in understanding the origin of the TDD features.

An apt interpretation of the present analysis is provided by the following
perturbation-theoretical model: the zeroth order effect of the bonding interactions is
the positioning of the atoms at their equilibrium positions, i.e., the establishment of
bond lengths and bond angles as well as their vibrational parameters. Moreover, if a
free-atom ground-state is degenerate, as is common for open p-, d-, and f-valence shells,
then zeroth-order degenerate perturbation theory also requires this ground-state to
adapt to the bonding situation by appropriate orientation. In addition, the bonding
forces cause genuine (i.e., nonorientational) deformations of the electron density in
higher order. They are embodied in DDD and offer further insights into the bonding
characteristics.
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3. Implementation. ± 3.1. Procedure of Application. Our study begins with an
absorption-corrected high-resolution data set and the approximate atomic positions.
For the high STOL (�sin (q)/l) values, mainly the localized core electrons contribute to
the intensity; whereas both the core and the valence electrons contribute to the low-
order data with 2s and 2p electrons (of second-row atoms B to F), giving quite similar
contributions [59] [60]. Since bonding causes some localized density features in the
valence region and some overall contraction of the valence shell, while thermal motions
extend the core density, the core-valence separation in k-space becomes less sharp in
molecules than for free atoms at rest. Calculations of the valence density of several
organic crystals using various upper limits of STOL showed indeed that the resultant
average peak heights of selected bond centers, considered as a function of the upper
STOL limit, reached the high-order plateau for larger k-values than is the case in the
corresponding free atoms. We concluded that STOL values up to k� 0.7 to 0.9 �ÿ1

contribute to the valence density of second row atoms.
The core-type parameters (coordinates and thermal parameters of the non-

hydrogen atoms with core electrons) and the overall-scale factor, are reasonably well
determined [61] by standard least-squares refinement against the data above this STOL
cutoff (the HO data). Next, the remaining valence-type parameters (coordinates and
thermal parameters of hydrogen; valence-orbital occupations, orientations, and shapes
of open valence shells) and the extinction parameters are determined by least-squares
refinement against all data. Determination of the core-type parameters from the HO
data alone is not only necessary for obtaining good values for atomic positions but it is
also essential to prevent a mixing of the asymmetries of the thermal vibrations (in the
core parameters) with the asymmetries of the valence-shell orientations (in the valence
parameters). The parameters describing these two types of non-sphericities become
strongly correlated when they are simultaneously determined by an all-data refinement
leading to significant errors. Our procedure yields valence occupations in reasonable
agreement with those from quantum-theoretical calculations on individual molecules
which are unadulterated by thermal vibrations and/or experimental noise.

Given a proper choice of the STOL cutoff, no great changes of scale and thermal
parameters happen upon simultaneous refinements of the core- and valence-type
parameters. In such refinements, the latter two types of parameters change significantly
less than their sigmas. Depending upon the quality of the data set and the type of atom,
the sigmas of the orbital occupancies typically lie between 0.01e and 0.1e. Directions of
orbitals with significantly different occupancies are typically determined within a few
degrees. However, when two orbital occupancies differ from each other by less than
DN� 0.1, then the two corresponding directions become computationally indetermi-
nate (typically by (several degrees�DNÿ1)) with respect to each other, which, of
course, is a reflection of the physical freedom existing in this case.

For the H-atoms, we use either reliable parameters from the literature (e.g., neutron
diffraction or multipole refinement), or we refine the hydrogen parameters using
Stewart�s [62] modified form factor in a first step and then expand the AÿH bond
length to the standard AÿH bond length, i.e., by ca. 10%. Then, we use the free-atom
hydrogen form factor to refine the orbital parameters of the other atoms and to
generate the density maps. This empirical adjustment should be kept in mind in the
ensuing interpretations. The change of the AÿH bond lengths from the X-ray values to
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realistic values is accompanied by occupation-number changes of up to 0.05e and by
orientational changes of several degrees.

3.2. Presentation of Results. Conventional promolecules are typically represented
using ORTEP [63] exhibiting the positional and vibrational information. In addition to
these parameters, our promolecule models contain the valence-orbital orientations and
occupancies (and shapes in case of d- and f-AOs). To present all three types of
information, positional, vibrational, and valence orbital, simultaneously in a single figure
is impractical. A clearer visualization is achieved by using two pictures, a conventional
one for the positional and vibrational information, and another one exhibiting the
positional and valence-shell information. Fig. 1 illustrates the latter technique as
applied to the molecule 1,2,3-triazine (experimental data from Angermund [38]).

In Fig. 1,a, the standard information on atom positions and thermal vibrations is
depicted in the usual manner by vibrational ellipsoids placed at the molecule�s nuclear
centers. Harmonic normal-vibrations in three-dimensional space are specified by three
directional and three amplitude parameters per atom, which are represented by the
directions and lengths of the ellipsoids� principal axes. In Fig. 1,b, the same graphical
technique is also used to represent the three directions and three occupancies of the
three p-orbitals of an open-p-shell atom. Anharmonic vibrations as well as orbital
orientations involving sp or sd hybrids, or d shells can be represented by higher-order
ORTEP surfaces [3] [4].

Another orbital representation (Fig. 1, c) utilizes sticks and balls. The size of the
balls represents the orbital occupancies and the stick directions are the orbital
directions. Alternatively, we may represent the p-orbitals by rods using SCHAKAL
[64], as shown in Fig. 1, d. Here the occupancy/orientation of each orbital is represented
by the length/orientation of its rod. Finally, the valence AO information can also be
displayed through contour maps, as will be mentioned below in connection with
Fig. 2,c, at the end of this section or, simply, by numerical tables.

Each of Figs. 1, b, c, and d present the same orbital information. The representation
of Fig. 1,d, exhibits more clearly the orientation of strongly aspherical atoms. On the
other hand, when two or three p-orbital occupancies are very similar, orbital directions
lose much of their uniqueness, and the representation of Fig. 1,b, is more appropriate.

The remaining information, i.e., the information contained in the experimental data
set but not our model, is then represented graphically by the deformation difference
density plot of DDD in two or three dimensions.

As an example, Fig. 2,a, shows a two-dimensional TDD map of 1,2,3-triazine in the
molecular plane, where the spherically averaged atom reference has been subtracted
from the observed density. Note that the TDD shows much left-right asymmetry,
whereas the bonding situation in the molecule is fairly symmetric even in the crystal.

Fig. 2, b shows a DDD map, prepared by subtracting the oriented atom promolecule
from the observed density. The DDD shows less detail than the TDD. The �missing�
information has been transferred into the valence-shell parameters. Note the
approximate left-right symmetry in this figure, corresponding to the approximately
symmetric intramolecular bonding forces.

Fig. 2, c, displays a map of the orientational difference density ODD� 1(oriented
reference atoms) ÿ 1(spherical reference atoms)�TDDÿDDD, which manifestly
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Fig. 1. Graphical representation of numerical information on 1,2,3-triazine. a) Standard ellipsoid representation
of positional and vibrational information. Representations of orbital occupancies and orientations by b)

ellipsoids; c) pseudo-atoms; and d) rods (see text).



furnishes a graphical presentation of the information regarding the oriented valence-
shell against a spherically averaged atomic background. It is seen that the oriented
nonspherical population of an open p-shell will give quadrupolar character to the
independent atoms in the molecule, which is most apparent in the molecular plane of
Fig. 2,c, for the N(1) and N(3) atoms. (The carbon quadrupoles are more apparent in a
vertical plane). The left-right asymmetry of this feature (the orientations of N(1) and
N(2) deviate by � 98 from left-right symmetry) may result from intermolecular packing
effects in the crystal and/or from systematic and statistical errors of the experiments.

It is apparent that the features of TDD (Fig. 2, a) are the result of lumping together
two kinds of features with fairly different characteristics, namely: i) the strongly
quadrupolar features of ODD (Fig. 2,c) due to the valence-shell orientations, and ii)
the trigonal deformations inherent in the DDD (Fig. 2, b), which are manifestly related
to the trigonal bonding coordination.

4. Applications. ± In this section, we report the results of using the described
approach to analyze the experimental diffraction data of three crystals, viz., 9-(tert-
butyl)anthracene (TBA), tetrafluoroterephthalonitrile (TFT), and 1,2,3-triazine
(TA). To discuss the relation of such analyses to questions of chemical bonding, we
also report complementary results obtained, for the corresponding isolated molecules,
by fitting promolecule densities in direct space to the densities of quantum
mechanically calculated electronic wave functions of the individual molecules. (The
latter were obtained by SCF calculations with double-zeta plus single polarization basis
sets). We shall often refer to these promolecules and difference densities as the
�theoretical� quantities while denoting the analogous quantities deduced from the
crystallographic analyses as the �experimental� promolecules and difference densities. A
close similarity will be shown to exist between the corresponding experimental and
theoretical quantities, and this agreement will prove valuable in illuminating the
experimental results, since theoretical promolecules can be analyzed and understood in
as much detail as desired. The latter analyses explain in particular certain systematic

Helvetica Chimica Acta ± Vol. 84 (2001) 1921

Fig. 2. Electron-density maps of 1,2,3-triazine in the molecular plane. a) TDD map, 1(molecule)ÿ 1(spherical
atoms); b) DDD map, 1(molecule)ÿ1(oriented atoms); c) ODD map, 1(oriented atoms)ÿ 1(spherical
atoms). Values of D1-contour lines are n� 0.1e/�3, where n�� 1,� 2, .. . ; dashed lines indicate negative D1

values. Dotted circles are drawn around N(1) and N(3) to guide the eye (see text).



differences between the atomic-orbital occupancies found by fitting densities through
superposition of atomic densities and Mulliken-type atomic-orbital populations
deduced from molecular electronic wave functions.

4.1. 9-(tert-Butyl)anthracene (TBA). 4.1.1. TBA Refinement. A summary of the
crystallographic information for 9-(tert-butyl)anthracene (data from [38] [65]) is given
in Table 6. ORTEP Drawings [63] of the TBA promolecule are shown in Fig. 3. The
sin(q)/l (STOL) cutoff, which separates the high-order (HO) and low-order (LO)
data to determine the atomic core parameters independently of the valence
deformations, was 0.65 �ÿ1 [13]. The STOL cutoffs are compromises between a value
large enough to eliminate all chemical deformation effects on the core parameters and
a value small enough to leave a sufficiently large ratio (No. of data/No. of parameters).
This cutoff left 2235 HO reflections for the refinement of 163 core-type parameters
(non-hydrogen positional and thermal parameters, and the scale factor), which were
refined in a first stage, where atomic densities with spherically averaged valence shells
were applied in the traditional manner. The results are similar to those reported by the
authors of the original measurements.

In the second stage, the 162 valence-type parameters (hydrogen positional and
vibrational parameters and orientation valence-shell parameters of non-H-atoms) were
refined against all the data. The results of the refinement are given in Tables 6 and 8.
Subsequent refining of the valence parameters decreased the RI

w value from 0.028 to
0.024, i.e., by 14%, and the least-squares error (LSE; i.e., physical information,
experimental noise, and bias of the model, reflected in the difference density maps) by
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Table 6. Crystal and Data Parameters for 9-(tert-Butyl)anthracene (TBA) , Tetrafluoroterephthalonitrile (TFT),
and 1,2,3-Triazine (TA)

Reference name TBA TFT TA
Molecular formula C18H18 C8N2F4 N3C3H3

Crystal system monoclinic orthorhombic triclinic
Space group symbol P21/c Cmca P1Å

Lattice parameters
a [�] 11.137 7.6848 5.7688
b [�] 6.8927 9.7350 6.8732
c [�] 17.792 9.5549 5.6725
a [8] 90 90 110.08(0)
b [8] 107.68(0) 90 113.94(7)
g [8] 90 90 95.30(2)

Temp. 100 K 98 K 100 K
Radiation MoKa MoKa MoKa

sin (q)/l [min/max, �ÿ1] 0.047/0.855 0.098/1.151 0.08/0.90
Number of reflections 42375 17740 9046
Number after averaging 6805 2387 2187
Number observed (I> 0) 4587 2179 2032
Internal agreementa) 0.049 0.016 0.027
RI

w (TDD) 0.028 0.041 0.063
RI

w (DDD) 0.024 0.029 0.056
LSE(DDD)/LSE(TDD)b) 0.83 0.50 0.77

a) RInt� (Sk j hIiÿ I j )/(Sk j hIi j ). b) LSE�Sk wk (DFk)2.



19%. This part of the information has thus been extracted from the TDD and is used to
determine the valence parameters.

There is evidence for rotational disorder in the t-Bu group. Since rotational disorder
was not allowed for in the reference model, the effects will show up as anomalous
thermal parameters that are not able to model the rotation correctly. The consequence
is that the valence orbitals will be smeared in an artificial manner making their
interpretation potentially misleading. For this reason, the Me C-atoms (C(16) ± C(18))
will not be discussed further.

4.1.2. TBA Core Parameters (Fig. 3). From the atomic positions, we obtain the most
important information about bonding, namely the bond lengths, bond angles, and
dihedral angles. The bond lengths (in �) are very similar to those in unsubstituted
anthracene (AN) [66] and may be interpreted in the conventional manner, e.g.,
assuming a bond length ± bond order correlation (Table 7). The standard deviation of
the bond lengths is ca. 0.001 �, resulting in s� 0.01. Only the bonds to C(9), at which
the bulky t-Bu group is substituted, are expanded (by more than 0.03 � in comparison
to AN) with corresponding angular distortions (visible in Fig. 3, b). The intermolecular
interactions cause very small asymmetric deformations of left and right bond lengths of
at most 0.003 �.

Table 7. Bond Lengths and Bond Orders for 9-(tert-Butyl)anthracene (TBA), Compared to Anthracene (AN)

Bonds Bond lengths [�] Bond order

TBA AN TBA AN

C(1)ÿC(2), C(3)ÿC(4), C(5)ÿC(6), C(7)ÿC(8) 1.37(1) 1.36(1) 1.7(9) 1.8(5)
C(10)ÿC(11), C(10)ÿC(13) 1.39(7) 1.40(1) 1.6(4) 1.6(2)
C(9)ÿC(12), C(9)ÿC(14) 1.43(0) 1.40(1) 1.4(6) 1.6(2)
C(2)ÿC(3), C(6)ÿC(7) 1.42(5) 1.42(8) 1.4(9) 1.4(8)
C(1)ÿC(12), C(4)ÿC(11), C(5)ÿC(13), C(8)ÿC(14) 1.43(7) 1.43(4) 1.4(3) 1.4(5)
C(11)ÿC(12), C(13)ÿC(14) 1.44(5) 1.43(6) 1.3(9) 1.4(3)
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Fig. 3. Top (a) and side (b) views of ellipsoid representation of the C-atoms in 9-(tert-butyl)anthracene (TBA)
representing core positions and vibrational directions and amplitudes.



4.1.3. TBA Valence AO Parameters (Figs. 4 and 5,c). Table 8 shows the p-orbital
occupancies Ni, the valence-shell quadrupole parameter

q�N1ÿ (N2�N3)/2

(where the numbering 1 to 3 is uniquely chosen so that (N1ÿN2) ´ (N2ÿN3)> 0 and
jN1ÿN2 j> jN2ÿN3 j ), and the p-AO orientations. All C-atoms have nearly the same
standard deviations of s(N)� 0.07e, s(q)� 0.1e. The local coordinate vectors for the
valence orbitals are perpendicular (�v�) , radially outward (�r�), and tangential (�t�) to
the respective rings for atoms C(1) through C(10). For C(11) to C(14), the directions �r�
and �t� are parallel and perpendicular to the cross-bonds. For C(15): �r� is radially outward
along the C(9)ÿC(15) vector, and �t� lies parallel to the average molecular plane. The
promolecule�s valence-shell information is presented graphically in Figs. 4 and 5, c.

There is a great deal of similarity among the atoms within the anthracene rings.
Each atom has a low occupancy of ca. 0.2e in one orbital with a refined orientation
approximately normal to the ring. In chemical terms, these are the carbon 2pp orbitals.
The other two p orbitals (both 2ps) have approximately equal occupancies of 0.9e. The
atomic ground-state density determined by the interatomic interactions in the molecule
exhibits thus an oblate cylindrical symmetry of the atomic valence shells with an
average quadrupole parameter q� 0.77. This oblate valence configuration of all ring
atoms best matches the electron density of these aromatic molecules while remaining
intra-atomically isoenergetic with the spherically averaged atom state. The typical
aromatic g-crystal packing of the molecules [13] [65] leads to a rotation of all oblate
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Fig. 4. Top (a) and side (b) views of ellipsoid representation of the C-atoms in TBA representing positions and
valence-orbital directions and occupancies. c) Representation highlighting common rotation of atoms.



ring atoms out of the ring planes by ca. 208 (with s� 48) into the same direction as is
apparent from the p-orbital directions displayed by Fig. 4,c.

From a quantum-chemical-hybridization point of view, one would expect sp2s
hybridization plus a pp orbital for the C-atoms in the anthracene rings with a single
electron in each of the four L-shell AOs. Instead, the promolecule model presented
here presumes that the 1s and 2s orbitals both doubly occupied. There are several
reasons for this choice. First and foremost, promotion of a 2s electron to the 2p orbitals
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Table 8. Valence-Orbital Parameters for the C-Atoms Cj of TBA. In each column: first entry� occupation Ni of
the ith p-AO; next three entries� cosines between orbital direction and radial (r), tangential (t), and vertical (v)
direction with respect to the rings. p-AO: nearly vertical to the rings; t-AO: nearly tangential to the rings, r-AO:
pointing radially towards the ring center. The value under the Cj is the valence shell quadrupolar parameter q�

N1ÿ (N2�N3)/2. The standard deviations are s(N)� 0.07, s(q)� 0.01.

Atom, q p-AO t-AO r-AO Atom, q p-AO t-AO r-AO

C(1) Ni 0.00 0.97 1.03 C(8) 0.11 0.90 0.99

q�ÿ1.00 �r� 0.29 0.61 0.73 q�ÿ0.83 ÿ 0.44 ÿ 0.36 0.82
�t� 0.07 0.75 ÿ 0.66 0.03 0.91 0.42
�v� 0.95 ÿ 0.25 0.17 0.90 ÿ 0.21 0.39

C(2) 0.13 0.71 1.16 C(9) 0.25 0.99 0.76

q�ÿ0.81 0.08 0.34 0.94 q�ÿ0.63 0.36 ÿ 0.68 0.64
0.32 0.88 ÿ 0.34 0.10 0.71 0.70
0.94 ÿ 0.33 0.04 0.93 0.19 ÿ 0.32

C(3) 0.22 0.95 0.83 C(10) 0.18 0.98 0.84

q�ÿ0.68 0.18 0.42 0.89 q�ÿ0.72 0.39 0.10 0.91
0.14 0.88 0.45 ÿ 0.02 0.99 ÿ 0.10
0.98 ÿ 0.20 ÿ 0.10 0.92 ÿ 0.02 ÿ 0.39

C(4) 0.11 1.07 0.82 C(11) 0.20 0.86 0.94

q�ÿ0.83 0.19 0.07 0.98 q�ÿ0.69 0.37 ÿ 0.45 0.81
ÿ 0.17 0.99 ÿ 0.04 ÿ 0.18 0.82 0.54

0.97 0.15 ÿ 0.20 0.91 0.34 ÿ 0.22

C(5) 0.25 0.70 1.05 C(12) 0.03 1.13 0.84

q�ÿ .63 ÿ 0.15 ÿ 0.67 0.73 q�ÿ0.95 0.42 0.05 0.91
0.04 0.73 0.68 0.08 0.99 ÿ 0.10
0.99 ÿ 0.13 0.09 0.91 ÿ 0.11 ÿ 0.41

C(6) 0.19 0.86 0.95 C(13) 0.25 1.02 0.74

q�ÿ0.72 0.26 0.37 0.89 q�ÿ0.63 ÿ 0.53 0.16 0.83
0.11 0.91 ÿ 0.41 0.06 0.99 ÿ 0.14
0.96 0.21 0.20 0.85 0.03 0.53

C(7) 0.17 0.95 0.88 C(14) 0.11 0.99 0.90

q�ÿ0.76 0.04 0.46 0.89 q�ÿ0.84 ÿ 0.33 ÿ 0.09 0.94
ÿ 0.26 0.86 ÿ 0.44 ÿ 0.09 0.99 0.07

0.97 0.21 ÿ 0.15 0.94 0.06 0.34

C(15) 0.35 0.78 0.86

q�ÿ0.46 ÿ 0.76 0.40 0.51
0.62 0.69 0.38
0.20 ÿ 0.60 0.77



would involve a strong electronic excitation by ca. 8 eV and, hence, not conform to the
principle of forming independent atom promolecules from oriented atomic ground-state
ensembles. Furthermore, this considerable energy difference not withstanding, the
radial density distributions of 2s and 2p orbitals in momentum space are very similar
and, therefore, difficult to distinguish by X-ray diffraction. Furthermore, in the
molecules investigated so far, density-fitting in direct space with variable s/p-
occupation has invariably yielded high s-populations near 2. These observations reveal
significant differences between energy-based minimizations, which underlie all
quantum-chemical interpretations, and density-based minimizations, which underlie
all crystallographic analyses, including the present one.

In view of the just mentioned density similarities, the density of a doubly occupied
2s orbital is closely equivalent, in the present context, to that of a singly occupied 2s
orbital plus 1/3 electron in each of the three p-orbitals. On the basis of standard
quantum-chemical intuition, one would, therefore, expect the density analysis to yield
an additional equal population of 2/3 electron for each of the three atomic p-orbitals.
This is not the case, however: Table 8 shows, as was already noted, that the carbon 2pp
AO�s have occupancies that are much lower, whereas the 2ps AO�s have occupancies
that are significantly higher, and Fig. 4 clearly exhibits the flat disc-like shapes of the
density ellipsoids of the p-bonded C-atoms. This is also found to be the case at atom
C(15) with an orientation corresponding to hyperconjugation with the anthracene ring.
These surprising results are not due to any error in the work on this molecule: Very
similar population differences will be found for the other molecules to be discussed
below. Nor is it a flaw of the present method of analysis: we have found analogous
results for density analyses (in direct space) of quantum-mechanically calculated wave
functions of individual molecules. We shall discuss the fundamental reasons for this
remarkable feature of the density analyses of pp-bonds in Chapt. 5.

4.1.4. TBA Difference Densities (Fig. 5). The total and the deformational difference
density maps (TDD and DDD, respectively) of TBA are shown in Fig. 5,a and b. They
were obtained by subtraction of spherical and oriented atom structure factors,
respectively, from the experimentally determined structure factors and then Fourier
transformation. Because of the nonplanarity of the molecule, the density is plotted on a
roof-like surface formed by the two planes through the left and the right halves of the
molecule. The maps exhibit the electron-density contribution not modeled by the
oriented promolecule parameters.

The intramolecular interactions in the anthracene ring exhibit a significant amount
of symmetry resulting in similar bond lengths. This intramolecular symmetry is well-
reflected both by the AO occupations (similar q parameters) and by the deformational
difference-density map (DDD in Fig. 5, b). The AO directions, on the other hand, and
the TDD maps seem to be somewhat influenced by the asymmetric intermolecular
interactions.

The bonding regions between the C-atoms exhibit a consistent DDD-contour level
of 0.4 to 0.5 e/�3 and are well-centered on the CÿC vectors. The bond density maxima
in the TDD map vary somewhat more, between 0.5 to 0.7 e/�3. In addition, there is a
little more density on the left-ring plane than on the right-ring plane, corresponding to
the p-parameters on the left side being, on the average, 0.1 larger than those on the right
side, which, however, is just the magnitude of s(q).
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Fig. 5. TDD Map (a), DDD map (b), and ODD map (c), on two roof-like planes through the left and right
halves of TBA. Contour lines described in legend of Fig. 2.



The different p to s density transfer is also exhibited in the molecular plane of
Fig. 5,c, which displays the ODD (�TDDÿDDD). It reflects contacts of varying
strengths between the molecule and its neighbors in the crystal.

4.2. Tetrafluoroterephthalonitrile (TFT) . 4.2.1. TFT Refinement. A summary of the
crystallographic information for tetrafluoroterephthalodinitrile (data from [67 ± 69]) is
given in Table 6 and a drawing of the promolecule model is shown in Fig. 6. Previous
studies have shown the X-ray data set to be a very good one, and comparisons with
theoretical calculations are favorable [61] [70]. Each of the atoms in TFT has a similar
scattering power and there are no H-atoms.

There are very few parameters in the promolecule model due to the high
crystallographic symmetry (2/m) of the molecule. The ring exhibits rms deviation from
planarity of only 0.004 �. The atoms N, C(3) and C(2) lie on a mirror plane normal to
the ring. The high site symmetry places severe constraints on the coordinates, thermal
parameters, and valence parameters of the N, C(3), and C(2)-atoms. These constraints
are handled as described in connection with Eqn. 12 and by Miller [13].

The scale factor and the atomic positional and thermal parameters (37 in total)
were refined against the 1133 HO data above 0.85 �ÿ1 yielding results similar to those
obtained by the authors of the original measurements. Following this initial refinement,
the 19 valence-orbital parameters and one extinction parameter were simultaneously
refined against the entire dataset.

4.2.2. TFT Core Parameters (Fig. 6). Due to the F and CN substitutions, the benzene
ring no longer has D6h symmetry. The C(1)ÿC(1') bond lengths are slightly shorter
(1.384 �) than the C(1)ÿC(2) ones (1.395 �), and C(2)ÿC(3) is significantly shorter
(1.427 �) than a typical single bond. Both have been interpreted as evidence of a slight
quinoidic character [61] [70].

4.2.3. TFT Valence AO Parameters (Figs. 7 and 8, c). The valence density of a N-
atom is spherically symmetric in its p3 4S ground state. However, there exists a low-lying
degenerate 2D excited state in the p3 ground-configuration manifold, which allows
intra-atomic p-orbital electron transfer also at the N-atom for little energetic expense.
Therefore, we use the p3 4S ground-state AOs, but allow for some pp! ps electron
transfer. The standard deviations of the refined occupancies are quite small, ranging

Fig. 6. Top (a) and side (b) views of ellipsoid representation of tetrafluoroterephthalonitrile (TFT) representing
atomic positions, and vibrational directions and amplitudes
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from 0.01e to 0.03e (see the numbers in brackets listed in Table 9), confirming the high
quality of this data set.

The valence-orbital-basis vectors used in Table 9 are: �t�� tangential-to, �v�� vert-
ical-to, and �r�� radially-outward from the ring. The optimized valence-orbital
arrangements that best fit the crystal density are shown in Fig. 7. The atoms N and
C(3) have approximately prolate cylindrical symmetry, nearly parallel to the nitrile
bond, which is consistent with our chemical intuition. As in TBA, the pp-occupations of

Helvetica Chimica Acta ± Vol. 84 (2001) 1929

Fig. 7. Top (a) and side (b) views of ellipsoid representation of atoms in TFT representing atomic positions, and
valence-orbital directions and occupancies.

Table 9. Valence-Orbital Parameters for TFT (see legend of Table 8). Standard deviations in bracketsa).

Atom, q p-AO t or p'-AO r-AO

C(1) Ni 0.38(2) 0.98(2) 0.64(2)

q�ÿ0.43 �r� 0.07 ÿ 0.15 0.99
or 0.47 �t� 0.04 0.94 0.15

�v� 0.99 ÿ 0.03 ÿ 0.07

C(2) 0.47(3) 0.74(3) 0.79(3)

q�ÿ0.29 0.09 0.00 0.99
0.00 1.00 0.00
0.99 0.00 ÿ 0.09

C(3) 0.36(3) 0.36(3) 1.28(3)

q� 0.92 0.00 0.00 1.00
0.00 1.00 0.00
1.00 0.00 0.00

N 0.77(2) 0.76(3) 1.47(3)

q� 0.69 ÿ 0.01 0.00 1.00
0.00 1.00 0.00
1.00 0.00 0.01

F 1.75(1) 1.65(1) 1.60(1)
q� 0.12 ÿ 0.23 0.22 0.95
or ÿ0.10 ÿ 0.38 0.87 ÿ 0.30

0.89 0.43 0.12

a) (n) means s� 0.0n.



these two atoms are much lower than their ps-occupations. Their quadrupolarities are
q�NsÿNÅ p are 0.69 and 0.92 for N and C(3), respectively. The corresponding values
obtained from quantum-chemical calculations and direct density-fitting on the isolated
molecule are 0.70 and 0.73.

The valence-orbital arrangement for the C(2)-atom has oblate cylindrical symmetry
with respect to an axis normal to the plane of the ring (q�ÿ0.29, close to the quantum-
mechanical value of 0.30 for the isolated molecule), which is consistent with the oblate
ring atoms of TBA as discussed earlier, and of 1,2,3-triazine to be discussed later. The
C(1) ring atom, however, has lost the axial symmetry, as shown by Ntangential >Nradial >
Np. That is, it is compressed by the electron-rich F-ligand in the radial direction. In such
cases the q-parameters, especially their signs, are not well-defined (see Table 9).

The F-atom is quite close to being spherically symmetric, as is to be expected for a
negatively charged Fÿ. Nonetheless, we have fixed the total p-occupations of the F-
atoms, i.e., neutral F to be 5. There are several reasons for this. First, our reference
model is an atomic and not an ionic one. Second, the density distributions of even the
most strongly ionic compounds such as those of the alkali halides are well-simulated by
a superposition of neutral atoms [20] [55] [58]. Note also that, when an atom is nearly
spherical (small q-parameter and nearly identical populations of the three p-AOs),
then the AO-directions are not well-defined and are physically less significant.

A good theoretical correlation betwen ps-population and bond order has been
documented [15]. Accordingly, the populations found here (see also Fig. 8,c) indicate a
stronger bond for C(1)ÿC(1') than for C(1)ÿC(2) (average NÅ s(t) bigger and average NÅ p

smaller for C1ÿC1'), and some multiple bond character for C(2)ÿC(3) (large average
NÅ s(r) and small average NÅ p). This is in agreement with the bond lengths.

4.2.4. TFT Difference Densities (Fig. 8). The total difference-density map with
respect to spherically averaged atoms, shown in Fig. 8,a, exhibits a large build-up of
charge along the bonds in the benzene ring and the nitrile bonds (being compensated
by opposite TDD values in various other regions), and small (positive and, even,
negative) contributions on the C(1)ÿF bond lines. Refining also the valence AO
occupations and directions reduces the residuals and least-squares error of the
independent atom model by as much as 50% (see Table 6). This means that the total
information in the TDD as regards bonding has been split up in two parts of
approximately equal magnitudes, one embodied in the numerical values of the valence
AO orientations and occupations of the independent atoms in the crystal, the other
being the DDD (and noise) shown in the map of Fig. 8,b. The overall effect of the
valence AO orientations and occupations is exhibited by the ODD shown in Fig. 8,c.

The DDD map shows bond-charge accumulations of various magnitudes in all
intramolecular bonds. Since the present maps are dynamic ones, the features are
thermally smeared and are less pronounced than in theoretical static maps. Indeed,
density-fitting in direct space for the quantum-mechanical wave function of the isolated
C8F4N2 molecule yields a DDD map with a maximum of 0.2e/�3 in the CÿF bonds. For
the CÿF bonds of some other molecules, too, negative values have been found on the
TDD maps [68] [71], whereas DDD maps always exhibit positive values [15].

The very low DDD maxima in the C(2)ÿC(3) and C(2)ÿN nitrile bonds deserve a
comment. While, in general, density deformations and orbital occupations can be
unambiguously distinguished, that is not the case for digonal, linear coordination. This
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is so because in the least-squares procedure, density accumulations corresponding to
covalence or lone pairs in two opposite directions can be largely simulated by an
increased ps-occupation, with the consequence that the DDD is small. Hence, digonal
multiple bonds and lone pairs result in low deformation difference densities [15]. In
these cases, the covalent bond strength correlates with the p to s occupation transfer
rather than with the DDD bond charge, as can be seen in Fig. 8,b or c.

4.3. 1,2,3-triazine (TA). 4.3.1. TA Refinement. A summary of the crystallographic
information for 1,2,3-triazine [72] is given in Table 6. Drawings of the positions and
vibrations of the promolecule reference were shown in Fig. 1,a.

As a compromise, a STOL cutoff of 0.6 �ÿ1 was used. This cutoff left 1137
reflections for the determination of the 55 core-type parameters. The statistical results
of the refinement of the core-type parameters against the HO data and the
simultaneous refinement of the 42 valence-type parameters against the entire data
set are given in Table 6, the resultant parameters are given in Table 10.

4.3.2. TA Core Parameters (Fig. 1,a). Despite the asymmetric crystal surroundings,
the molecular rings are planar and left-right symmetric within 0.001 � (s� 0.001 to
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Table 10. Valence-Orbital Parameters for TA (see legend of Table 8). Standard deviations in bracketsa).

Atom p-AO t-AO r-AO

N(1) Ni 0.58(4) 0.93(4) 1.49(3)

�r� 0.20 ÿ 0.27 0.94
�t� ÿ 0.72 0.61 0.33
�v� 0.66 0.74 0.08

N(2) ÿ 0.76(3) 1.02(4) 1.22(3)

0.24 ÿ 0.16 0.96
0.22 0.97 0.10
0.94 ÿ 0.19 ÿ 0.27

N(3) 0.61(3) 0.92(4) 1.47(3)

0.33 0.47 0.82
0.42 0.71 ÿ 0.57
0.85 ÿ 0.53 ÿ 0.04

C(1) 0.38(4) 0.62(4) 1.00(4)

0.03 0.59 0.81
0.23 0.78 ÿ 0.58
0.97 ÿ 0.20 0.11

C(2) 0.38(4) 1.03(4) 0.59(4)

0.77 0.05 0.63
0.03 0.99 ÿ 0.12
0.63 ÿ 0.11 ÿ 0.76

C(3) 0.21(4) 0.67(4) 1.17(4)

0.15 0.88 ÿ 0.45
0.02 0.45 0.89
0.99 ÿ 0.14 0.05

a) (n) means s� 0.0n.



0.002 �), while the H-atoms are asymmetrically shifted. Bond length/bond order
relations yield the following bond orders: 1.7(1) for CÿC, 1.5(7) for NÿN, and 1.5(3)
for CÿN.

4.3.3. TA Valence AO Parameters (Fig. 1, b). The atoms in triazine have rather
asymmetric densities (Table 10) that cannot be represented by a single q-parameter.
The average occupancies of the N-atoms are Npp� 0.65e, Npt� 0.95e, and Npr� 1.4e
(s(Ni)� 0.03 to 0.04e). In close correspondence, fitting of the quantum-mechanically
isolated molecule density yields the values 0.71e, 0.94e, and 1.35e. The p-occupancies
are again relatively low, but higher than those of the p-bonded C-atoms corresponding
to the higher electron numbers of the N-atoms. The highest occupancies are radially
outward in the directions of the N lone pairs. However, owing to N ´´´ HC
intermolecular interactions in the crystal, they are somewhat bent away from the
radial directions.

The average carbon p-occupation is Cpp� 0.3e, in agreement with the conjugated
carbons in the other molecules. Similarly, fitting of the theoretical density of the single
molecule yields 0.29e. The occupancy of the carbon AOs nearest to the CÿC bonds
(C(1)pr, C(2)pt, C(3)pr ; see Table 10 and Fig. 1, b) is� 1.05e. Density fitting of the
calculated isolated-molecule wave functions yields the theoretical value 0.90e. The
magnitude of the density increase in the bonds due to valence-shell orientation
(Fig. 2,c) varies in the order CÿC>NÿN>CÿN. This corresponds to the bond orders
deduced from the core parameters.

As is the case for the layer structured TBA, all atoms in TA are also tilted in the
same direction, in fact about 258 (Fig. 1, b). The molecular-packing effects, although
much weaker than the chemical bonds, are still easily detectable. They have an
interesting influence on the direction of the atomic orbitals, which will be discussed in
more detail elsewhere.

4.3.4. TA Difference Densities (Fig. 2). The free TA molecule has C2v symmetry with
the C2-axis passing through the atoms N(2), C(2), H(2). This is not reflected at all in
the TDD map. Indeed, due to molecular packing and intermolecular interactions, the
C2 axis of the free molecule is not maintained in the crystal. Nonetheless, equivalent
bonds have still nearly identical lengths implying that, in spite of the intermolecular
interactions in the crystal, the intramolecular bonding situation is nearly unchanged.
This inference is indeed confirmed by the approximate symmetry of the DDD map.

5. Density Fitting and Quantum-Mechanical Populations: Inferences from the p-
Bonded p-Occupancies. ± A startling result found in the preceding sections was that all
carbon p-AO�s involved in p-bonding are assigned much lower occupancies in the
oriented-atom-density model than one would anticipate from population analyses of
quantum-mechanical wave functions. We encountered this apparent discrepancy first
for the occupancies deduced from experimental X-ray data on crystals [13], but
subsequently obtained entirely analogous results for promolecule densites determined,
as discussed above, by fitting to theoretically calculated ab initio densities of
corresponding isolated molecules in direct space [15] [25] [28]. We shall now show
that this occupation/population difference reveals a basic difference in character
between those orbital expansions that are obtained by fitting a molecular electronic
density through a superposition of atomic-orbital densities, and those orbital

Helvetica Chimica Acta ± Vol. 84 (2001) 1933



expansions that are determined by the first-order density matrix of the electronic wave
function.

The orbital populations deduced from an electronic wave function provide
information regarding the electron distribution that is derived from the expansion of
the first-order density matrix D(r1, r2) in terms of these orbitals. Relevant in the present
context are expansions in terms of optimally adapted, fully or partially occupied atomic
orbital sets (say, by expansion in terms of extended bases). For most molecules, it is
possible to find good approximations to the exact density matrix that can be expressed
in this manner (e.g., by full-valence-space MCSCF calculations). Such expansions can
be written in the form

D(r1, r2)�Sijci(r1)cj(r2)pij�D0�DD, (18)

D0�Sici(r1)ci(r2)qi, qi�SjpijSij, Sij�hci j cji, (19)

DD�Sij[cicjÿ Sij(cicj� cjcj)/2]pij (20)

where the elements pij form the so-called charge-bond-order matrix. The terms D0 and
DD are the quasiclassical and the interference parts, respectively, of the density matrix
[23]. Since DD vanishes upon integration over all space, D0 contains the entire electron
population, and the weight factors qi in the quasi-classical part D0 are the Mulliken
populations of the optimal atomic minimal orbital set. (Similar statements also hold for
more advanced population definitions.) We note that two basic properties of the
density matrix expansion are accounted for, namely i) that the density matrix is derived
from an antisymmetric wavefunction, i.e., that it satisfies the demands of the Pauli
principle, and ii) that parts of the populations arise from off-diagonal terms of D, i.e.,
from products of atomic orbitals on different atoms with nonvanishing overlap
integrals.

Much less information is available, on the other hand, if only the density (i.e., r1� r2

in Eqn. 18) is known, be it in position space, in momentum space, or in both. This
information is, in fact, insufficient for the reconstruction of the total density matrix (see,
e.g., [7] [8]). The deduction of atomic orbitals and their occupancies from densities alone
requires, therefore, additional constraints introducing further assumptions. In all
crystallographic promolecule models, for instance, only atomic one-center terms are
admitted (with variable occupancies, and, possibly, radial scaling and angular
deformations) because strong indeterminacies are encountered when one attempts to
include two-center overlap terms as well [4] [7]. As a result, serious problems can arise
with respect to the Pauli principle and the interatomic-overlap contributions, as we
shall now see by examining a specific example.

Consider the ethylenic prototype model of two equivalent C-atoms, a and b,
connected by a s- as well as by a p-bond. All other bonds and electrons are ignored. An
approximate molecular-density matrix D and density 1 are given by

D(r1, r2)�Ds�Dp, Ds� 2s(r1)s(r2), Dp� 2p(r1)p(r2), (21)

1mol(r)�1s�1p, 1s� 2[s(r)]2, 1p� 2[p(r)]2, (22)
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with the molecular orbitals

s� (sa�sb)/
�������������������
2�1� Ss�

p
, Ss�hsa j sbi,

p� (pa�pb)/
��������������������
2�1� Sp�

p
, Sp�hpa jpbi, (23)

where sa, sb are s-AO�s on atoms a and b respectively, parallel to the bond axis and
pointing towards each other, while pa, pb are p-AO�s perpendicular to the aÿb
bond.

In analogy to Eqn. 18, the molecular-density can then be expressed as the sum of a
quasiclassical part s0 and an interference part D1:

1mol� 10�D1, 10�10
s � 10

p, D1�D1s�D1p, (24)

10
s �s2

a� s2
b, D1s� [2sasbÿ Ss(s2

a� s2
b)]/(1� Ss),

10
p�p2

a�p2
b, D1p� [2papbÿSp(p2

a�p2
b)]/(1�Sp). (25)

Separate integrations of 10
s as well as 10

p yield two electrons in each case. The
coefficients of the squares of the AOs in 10

s and 10
p (Eqn. 25) are the Mulliken

populations. They are manifestly unity for every one of the four atomic orbitals and, at
the SCF level, this is independent of the quality of the orbitals.

Assume now that only the density 1mol is known and consider the approximation
obtained by fitting to it a promolecule density 1pm in terms of atomic-orbital densities
with the same atomic orbitals sa, sb, pa, pb. The D1h symmetry forces s2

a and s2
b to have

equal occupancies and the same holds for p2
a and p2

b. Hence, in contrast to Eqn. 24, the
density of the fitted promolecule will have the form

1pm� qs1
0
s � qp10

p, qs� qp� 2, (26)

where 10
s, 10

p are the quasiclassical density parts defined in Eqn. 25, and qs, qp do not
have to be 1. It is apparent that qs and qp are also the occupancies of the corresponding
individual atomic-orbital densities in the model. Satisfaction of the Pauli principle
separately on each atom requires therefore that qs and qp both lie between 0 and 2, and
we can write

qs� 1� cos g, qp� 1ÿ cos g, (27)

so that the promolecule density can be expressed as

1pm� 10� 1' cos g, 1'� 10
s ÿ 10

p, (28)

with 10 being the quasiclassical density of Eqn. 24.
The difference between the molecular-density 1mol in Eqn. 24 and the promolecule

density of Eqn. 28 depends, therefore, on the one parameter g as follows

1molÿ 1pm�D1ÿ 1' cos g, (29)
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and the least-mean-squares fit of 1pm to 1mol is readily seen to be accomplished by the
value of g satisfying

cosg�Q if jQ j< 1, cos g�Q/ jQ j if jQ j> 1, (30a)

Q�hD1 j 1'i/h1' j 1'i. (30b)

The promolecule occupancies will therefore agree with the Mulliken populations (i.e.,
qs� qp� 1) only when cos g�hD1 j 1'i� 0, i.e., if

h1molÿ 10
s j 10

si� h1molÿ 10
p j 10

pi (31)

which is manifestly not the case in general. In fact, model calculations with typical
atomic orbitals at reasonable interatomic distances always yield positive values for
cos g. According to Eqn. 27, this result implies s occupancies larger than unity and p
occupancies smaller than unity, in agreement with what was found in our investigation
of actual molecules and crystals.

The origin of this s-occupancy excess and the corresponding p-occupancy
deficiency, as compared with the Mulliken populations, becomes apparent by
considering Eqns. 24, 25, and 28, 29. Whereas the density from the wave function
contains two-center-overlap interference contributions (D1 in Eqns. 24 and 25), the
promolecular density contains only pure atomic terms. LMSQ Minimization of the
difference (Eqn. 29)] implies, therefore, that the interference density contribution D1
to 1mol will be mimicked by 1', defined in Eqn. 28, i.e., by a readjustment of the
quasiclassical density contributions 10

s and 10
p to 1pm. Since 10

s contains a greater charge
density in the bond center than 10

p, it is better suited to substitute for the interference
density, which embodies a charge accumulation around the bond center. The 10

s

occupancy is, therefore, enhanced at the expense of the 10
p occupancy. (Similar

simulations are also found for higher quality density fittings such as in multipole models.)
The occupancy shift described is possible since, in the independent-atoms

promolecule, the Pauli principle is enforced only within each atom. In the actual SCF
wave function on the other hand, the s populations as well as the p populations both
must be equal to unity because of the validity of the Pauli principle in the molecule (see
Eqns. 21 and 22). There is no analogous restriction in the promolecule model. (The
main thrust of these inferences also remain valid for post-SCF wave functions even
though the constraints on the populations are less rigid there because of the possibility
of some s2!p*2 substitutions.)

In addition to the foregoing considerations, a further factor must be taken into
account with respect to the promolecule densities used in our analysis, namely, that the
promolecule-density fitting is done, by definition, in terms of free-atom SCF orbitals,
whereas the atomic orbitals required for the optimal representation of the molecular-
density matrix may be severely deformed with respect to the free-atom orbitals, notably
by radial scale changes and by angular polarizations. Such atomic-orbital deformations
do not alter, the population distribution between the p- and the s-orbital space
determined by the actual SCF density matrix. But, use of the free-atom SCF orbitals for
fitting the promolecule density to such an actual density entails an even greater
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preference of the s contributions over the p contributions by virtue of the
aforementioned lack of restrictions. (Additional changes occur at post-SCF levels or
using experimental densities.) These further enhancements of the trend explained in
the preceding paragraphs can be quite large, as is documented in a detailed
examination of a variety of theoretically calculated double-bond densities [25] [28].

Thus, intrinsic differences exist between atomic-orbital occupancies determined by
promolecule density fittings and atomic-orbital populations determined by density-
matrix expansions. They arise from the absence, in the promolecule model, of the
interatomic-overlap terms and the interatomic electron-sharing restrictions related to
the Pauli principle. They are furthermore exacerbated by molecular deformations of
the atomic-orbital bases.

6. Discussion. ± 6.1. Procrystal Specifications. An algorithm has been described for
the least-squares determination of the parameters of a promolecule constructed from
positioned and oriented independent atoms, and its usage has been illustrated. The
promolecule�s standard core-type parameters (non-H-coordinates, vibrations, and site
occupancies) are determined for the atoms with core shells (which are largely
unaffected by chemical-bonding effects) using the high-order data. In addition, our
promolecule includes valence-type parameters (the usual H parameters as well as the
valence-orbital occupancies, and the shapes and orientations of all heavier atoms) and
they are determined on the basis of the entire data set in the least-squares refinement.
We note that the valence density comprises extended as well as sharply localized
features in the bonds and lone pairs. No significant interactions between the core
parameters from the high-order data, and the valence-orbital parameters have been
found so far in simultaneous refinements. The oriented-atom promolecule offers
additional insight into the nature of chemical bonding.

Atomic coordinates and vibrational parameters are the major indicators for
recognizing interatomic interactions, characterizing both intramolecular bonds and
intermolecular interactions [73]. We mention, for instance, the bond length-bond order
relation. The electrostatic quasiclassical interaction of independent atoms at quantum-
mechanical equilibrium separations contributes a major portion of the equilibrium
bond energy [16] [17] [36].

In the present model of atoms in molecules and crystals, the second largest effect on
the density of systems with open valence-shell atoms is due to the establishment of
specific ground-state orientations and occupations in the valence shells of atoms with
degenerate or quasi-degenerate ground states. The AO occupations are strongly
influenced by the Pauli exclusion effect of doubly occupied AOs. This ground-state
orientation of the independent atoms can change the quasi-classical electrostatic
interaction energy by amounts of up to several eV per bond [17]. The atomic valence-
orbital occupancies correlate well with bond orders and bond polarities [15].

The third piece of information of bonding is the remaining difference density
(called here deformation difference density, DDD). It comprises those quantum-
mechanical interference effects, charge transfers, and genuine atomic deformations
(energy-costly atomic promotions paying out slightly more when the atoms bind),
which cannot be simulated by appropriate orbital occupancies in the independent atom
ground states.
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There are many indications that it is intrinsically difficult to relate density
differences in detail to energy differences. We note, for instance, the difficulties of
finding density functionals that reproduce kinetic energies to an accuracy commensu-
rate with molecular binding energies, or the practical impossibility of recovering
quantum-mechanical wave functions from their densities without solving the Schrö-
dinger equation. Relevant for the crystallographic context is that, so far, unambiguous
density fittings are practically restricted to the use of superpositions of atomic densities.
We have discussed in Chapt. 5 that this limitation entails intrinsic differences in the
interpretation of the resulting occupations as compared to populations deduced from
quantum-mechanical wave functions.

Given this limitation, the described extraction of oriented ground-state densities
(satisfying specific restrictions including the intra-atomic Pauli principle) by means of
an optimal local-density adaptation seems a sound approach to the identification of
meaningful intrinsic atomic building blocks in the promolecule/procrystal model. We
have demonstrated its feasibility and performance by applying it to an interesting cross-
section of systems. 9-(tert-butyl)anthracene, tetrafluoroterephthalonitrile, and 1,2,3-
triazine. 9-(tert-butyl)anthracene (TBA) has low site symmetry but a very large
redundancy of chemically similar bonding situations. Tetrafluoroterephthalonitrile
(TFT), on the other hand, has high crystallographic symmetry and a variety of unique
bonding situations. 1,2,3-triazine (TA), finally, has some redundancy and its low
number of parameters permitted us to carry out a large number of tests when
developing the method [13].

The investigations have shown that the densities of this oriented independent atoms
model, as well as the resulting DDDs, exhibit consistent behavior patterns under
analogous binding and coordination situations, and are amenable to consistent
interpretations (even though their occupancies have somewhat different meanings
than the populations derived directly from wave functions).

It is particularly gratifying and significant that a close agreement is found between
the quantitative inferences drawn from fitting oriented-atom model densities of
isolated molecules to the densities of the calculated quantum-mechanical wave functions
and the quantitative conclusions reached from fitting the Fourier transforms of
oriented-procrystal model densities to the experimental X-ray diffraction data of the
molecular crystals formed from the same molecules. This parallelism is extremely useful
because, through theoretical calculations on isolated molecules, it is possible to
establish explicit relationships between the features of oriented promolecules as
defined here and the population and bonding properties of quantum-mechanical wave
functions in as much detail as is necessary or desirable. These isolated-molecule results
can then serve to gauge the interpretation of oriented-atom models for procrystals
derived from experimental densities.

6.2. Results for the Reference Model. The new reference model exhibits information
about chemical interactions between atoms in crystals that exceeds what is provided by
bond lengths and angles derived from the core positional parameters alone. The new
information is furnished by the directional parameters and the occupancies of the
valence AOs. The asphericity of this reference model can also be exhibited by the
orientational difference density (ODD), i.e., the difference between the density of the
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superposition of the optimally oriented and the spherically averaged atoms. The
following trends were found: 1) Short and strong bonds result in highly populated ps-
AOs with high occupations parallel to the bond, or tangential to two adjacent bonds. 2)
The p-bonds are generally characterized by pp-AO occupations that are rather lower
than corresponding populations derived from electronic wave functions. This general
result is corroborated by density fittings of purely theoretically calculated wave
functions of isolated molecules [15], and its reasons and implications have been
discussed in Chapt. 5. 3) Lone pairs also result in highly populated p-AOs oriented in
the �lone-pair direction�. 4) Electron attracting, electron-rich atoms that are thought of
as carrying a negative partial charge (such as F in TFT) are nearly spherical. They
reduce the ps-population of the adjacent atom. 5) While the AO occupancies are
essentially determined by the strong intramolecular bonds, the AO orientations are also
influenced by the weaker intermolecular effects in molecular crystals.

For the interpretation of the orbital occupancies, it is furthermore relevant to keep
in mind that p-orbitals are objects extending on two opposite sides of the atomic cores,
while chemical building blocks such as bonds or lone pairs in general are thought to
extend only to one side of the core, with various angles between them. Consequently, all
bonds and lone pairs of one atom together determine the three p-occupancies in a
coupled manner under the constraint of atomic charge conservation. In the special case
where two such chemical building blocks are linearly coordinated, forming an angle of
1808, the corresponding ps-AO acquires an especially high population.

From the foregoing observations, it is apparent that the role played by the atomic
orbitals in the present context is somewhat different from that played in the context of
quantum-chemical population analyses. The implication is that the oriented atomic
orbitals and their occupations, as obtained from density fittings, cannot be directly
identified with any natural atomic orbitals intrinsic to molecular electronic wave
functions. This is because, in the context of X-ray-analysis work, all effective density
fittings are based on the superposition of atomic densities, and, in such an approach,
atomic orbitals are used somewhat differently than in molecular wave functions. Most
consequential are the following two differences: i) densities of wave functions contain
overlap and interference terms between different atoms whereas crystallographic
density-fitting expressions do not and have to approximate them through super-
positions of AO densities; ii) densities of wave functions embody certain restrictions
placed on the sharing of electrons between different atoms as a result of the validity of
the Pauli principle for the molecular wave functions, whereas the density-fitting
expressions embody only the intra-atomic Pauli principle. However, although these
differences entail modifications in the conceptual interpretations, such interpretations
can nonetheless be developed in a consistent manner, as has been elaborated above, in
particular with the help of theoretical calculations on isolated molecules.

6.3. Results for the Deformation Difference Density. The information remaining
after subtracting the reference model density from the actual electron density is
displayed by the deformation difference density (DDD), i.e., the density difference
between the crystal and the positioned and oriented independent atoms. In these maps
the following trends were observed: 1) All covalent bonds exhibit bond density
accumulations in the DDD maps. Since the refined AO populations already account for
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the atomic Pauli exclusion effects, even bonds to electron-rich atoms like F, which
exhibit zero or negative bond charges in the traditional TDD maps, show at least some
density accumulation in the DDD map. 2) Strong or multiple bonds do not show bigger,
but normal (ca. 0.4e/�3 for 2nd-row atoms, as C or N) or even smaller DDD values.
This surprising result, which is also found in theoretical calculations on isolated
molecules [20], is related to the fact that, as discussed above, these bonds have a high
ps-population of the model density, especially if there are bonds or lone pairs on the
back side of the atom (�N j in TFT, compare also ± F j). If, now, such a strongly
populated p-AO is subtracted from the molecular bond density, then only a low DDD
value survives in the bond (C�N, CÿF, and CringÿCN of TFT, bonds of TA). 3) DDD
Accumulations behind the atoms (coupled with charge depletion on the opposite side
of the core) indicate lone pairs. These typically dipolar features on DDD maps are,
however, not as complex as the corresponding lone-pair features on TDD maps, which
most often have multipolar character, of various signs that strongly depend on the
chosen valence-AO populations (spherical or prepared). Again, it is to be noted that
bonds, especially multiple bonds, opposite to a lone pair result in a large p-AO
population which may leave only very little lone-pair density in the DDD (N and F in
the TFT molecule). The influence of the C(3)�N triple bond on the C(3)-ps
population similarly results in a low DDD value on the C(1)ÿC(2) single bond in TFT.
4) Intermolecular interactions, which do not modify intramolecular bonds significantly,
have only a small influence on the intramolecular DDD.
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